

How to Implement Custom BAdIs
for XStep Valuation and
Generation

Applies to:
XStep-based PI Sheets (ERP PP-PI) or Electronic Work Instructions (ERP PP). For more information, visit
the Manufacturing homepage.

Summary
When you use XSteps to define PI Sheets or Electronic Work Instructions the automatic valuation (e.g.
material number) and the generation of elements (e.g. material component list) are important features. To
provide even more flexibility new custom-defined valuation symbols or generation scopes can be included.
This article provides a simple guide on how to set up the BAdIs needed for this.

Author: Dr. Arne Manthey

Company: SAP AG

Created on: 9 July 2008

Authors Bio
Dr. Arne Manthey was born in Stuttgart, Germany. His background includes a German ‘Diplom’
(Master) in chemical engineering in 1995 and a Ph. D. in Chemical Engineering (Aerosol
science) in 2000. He has been a Consultant for Manufacturing in chemical and pharmaceutical
industries at SAP Germany from 2000 - 2007. There he focused on PI sheets and OPC
connectivity. Since April 2007 he is working as solution manager for application solution
management manufacturing at SAP AG.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 1

https://www.sdn.sap.com/irj/sdn/bpx-manufacturing

 How to Implement Custom BAdIs for XStep Valuation and Generation

Table of Contents
Introduction ...3

XStep Background ..3
BAdIs for XSteps...4

Customizing ..5
Release Namespaces [CMX04]..5
Applications & Variants [CMX01] - Optional ...5
Scopes of Generation and Valuation Symbols [CMX02] ..6

Data Categories ...7
Valuation Symbols ...7
Scopes of Generation ..8

Check Implementation Status [CMX05] ..9
BAdI Implementation [SE18]...10

Create implementation..10
Maintain Filter for the implementation...11
Maintain coding (interface)..12

Sample coding ..14
Symbol valuation...14

Sort string...14
Generation scope..16

Simple generation with filter ...16
Material components w/o context restriction ..18

Related Content..22
Copyright...23

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 2

 How to Implement Custom BAdIs for XStep Valuation and Generation

Introduction
XSteps are the state-of-the-art technology to define PI Sheets (ERP PP-PI, R/3 Enterprise Ext. 2.0 and later)
or Electronic Work Instructions (ERP PP, ERP 6.0 EhP3 / ECC 6.03). PI Sheets or Electronic Work
Instructions (EWIs) are easy-to-use work sheets where all the manufacturing relevant data can be displayed
or entered. Operators can work on these sheets as a one-stop-shop with no need to start multiple
transactions in the ERP system.

In order to allow this flexibility all relevant data must be provided inside the XSteps. This is done with
automatically valuated parameters and generation scopes for repeated elements (e.g. material components).
There are numerous valuation symbols and generation scopes available in SAP standard. However there is
always the need to provide additional information or to filter a generation scope by custom criteria.

This guide explains how to set up these BAdIs.

XStep Background

There are three locations for XSteps:

 Standard XStep (SXS) repository

► Definition of generic building blocks that can be re-used inside the repository or in recipes/routings

► Independent of specific recipes/routings or orders

 Master recipe (PP-PI) or standard routing (PP)

► Standard XSteps can be included as reference (changes in the repository will also change the
reference in the recipe/routing, dotted line in picture) or copy (decoupled from repository)

► XSteps can be assigned to specific operations/phases

 Process order (PP-PI) or production order (PP)

► All XSteps and SXS are copied from the routing/recipe. References will be exploded with the valid
version of the order start date

► On control recipe generation execution of all generation scopes (e.g. for all components) and
symbol valuations (e.g. material number). This is the part where all order-relevant data flows into the
XStep elements where you have defined it.

 Control recipe: Contains all information from the XSteps and either

► Builds the instructions in the Electronic Work Instruction / PI Sheet

► Is sent to an external system where the information is processed

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 3

 How to Implement Custom BAdIs for XStep Valuation and Generation

BAdIs for XSteps

Beside the standard valuation symbols and generations scopes every customer can create own methods for
valuation and generation. This is done with BAdI implementations. Every standard symbol and generation
can be re-used in these BAdIs.

The XStep locations mentioned before are also distinguished during valuation of symbols and execution of
generation scopes. Dependent on the location there are several restrictions:

 Standard XStep repository (Application XSV):
No information of specific recipes, orders or phases/operations available, e.g.:

► No Material number

► No Component data

► No Scheduling dates

 Master recipe or standard routing (Application MRC)
No specific order information available, e.g.:

► No Scheduling dates

► No batch data

► No variant configuration

 Process or production order (Application MOR):

► No restrictions
This is an important aspect that you need to consider when implementing the BAdIs. Since there is the
possibility of simulation in all three applications also the generation and symbol valuation can be executed in
these simulations. If you want some meaningful information to be displayed you need to check the calling
application in the BAdI and set some dummy information. You can do this either inside the BAdI method
(using a case statement) or by using different BAdI implementations which are controlled by the BAdI filter
(as explained later)

Since this is of course more effort than just providing the data in the order application (MOR) you can as well
leave the result blank for the other applications (XSV and MRC) and live with the results. As a matter of fact
also many of the SAP standard objects do not offer meaningful (or dummy) content for every case. (For
example, if you simulate a material component generation scope in the SXS repository there will be no
information displayed)

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 4

 How to Implement Custom BAdIs for XStep Valuation and Generation

Customizing

Release Namespaces [CMX04]

Here you have to release the namespaces defined by transaction CMX02

Applications & Variants [CMX01] - Optional

There might be a requirement to have different variants of BADIs active (e.g. one variant is active in summer
the other in winter). For this purpose several variants can be maintained for the different
applications.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 5

 How to Implement Custom BAdIs for XStep Valuation and Generation

Scopes of Generation and Valuation Symbols [CMX02]

Here you define the structure of generation scopes and symbols in your namespace (including the
predefined SAP namespace).

First you have to define one or more namespaces to better organize the BADIs. The standard namespace
‘SAP’ contains all the standard valuation symbols and generation scopes. When you create new
namespaces you need to release those with transaction CMX04.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 6

 How to Implement Custom BAdIs for XStep Valuation and Generation

Data Categories
The category can be used to organize the symbols (Folder structure when browsing the valuation symbols). Created category
‚IDES’

Valuation Symbols

Create the valuation symbols for the namespace that are used for the parameter definition. You must assign
a data category to each valuation symbol. If you want to use your own valuation symbols, you must
implement BAdI CMX_XS_SRV_SYM (described later in this document).

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 7

 How to Implement Custom BAdIs for XStep Valuation and Generation

Scopes of Generation

Here you add your own scopes of generation. You must assign a data category to the generation scope. If
you want to use your own scopes of generation, you must implement the BAdI CMX_XS_SRV_GEN
(described later in this document)

If the BAdI implementation for your own scope of generation contains further scopes of generation, you must
list the namespaces for all scopes of generation used. The namespaces must all have been
released.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 8

 How to Implement Custom BAdIs for XStep Valuation and Generation

You can also assign key fields to the scope of generation that are set directly from the scope of generation:

Check Implementation Status [CMX05]

Here you can check the status of all XStep BAdI implementations. If a valuation symbol or generation scope
is not active check the activation status:

 The Method (~GET_DATA)

 The Implementation

Note: This only checks whether there is active coding for each combination. The coding itself might not evaluate the
elements correctly (e.g. due to conceptual errors)

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 9

 How to Implement Custom BAdIs for XStep Valuation and Generation

BAdI Implementation [SE18]

Create implementation

Enter BADI definition:

 CMX_XS_SRV_SYM for symbol valuation

 CMX_XS_SRV_GEN for generation scope

And create a new implementation:

Enter implementation name (e.g.
ZPU_BI_SYM_PACK)

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 10

 How to Implement Custom BAdIs for XStep Valuation and Generation

Enter short text and add at least one line for the filters:

Maintain Filter for the implementation

One implementation can be used to valuate several symbols in several applications (repository, recipe and
process order). The decision which implementation is used for a symbol is done by filters.

To use one BAdI for all valuation symbols in your namespace (e.g. Z01) you would specify:

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 11

 How to Implement Custom BAdIs for XStep Valuation and Generation

If you want to use this BAdI implementation just to provide dummy values in case of simulation in the SXS
repository you would use:

You should make sure that all existing BAdI implementation do not intersect in regard to their filters. For
example, if you would have 2 BAdI implementations which have the above filters defined there would be an
intersection for Z01/SORTSTRING/XSV due to the wildcards in the first filter.

Maintain coding (interface)

Select tab ‘Interface’ and double-click on method
GET_DATA.

If you did not save your implementation so far you will get this popup:

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 12

 How to Implement Custom BAdIs for XStep Valuation and Generation

Assign the implementation to a package:

Then maintain your coding:

After finishing the coding you need to activate both the method and the BAdI implementation! You can check
this with CMX05 as explained before.

The BAdI implementation works similarly with the generation scope BAdI definition. There is some example
coding available in the next chapter.

Now you can use and test your valuation symbols and generation scopes.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 13

 How to Implement Custom BAdIs for XStep Valuation and Generation

Sample coding

Symbol valuation

Sort string

The following sample code describes the custom symbol valuation of the sort string in the material list.
Precondition to use this symbol is that the symbols for a reservation are known in this context (e.g. by using
this symbol in an XStep that is generated for each material component). This means that you have to valuate
also other symbols in the same XStep like:

 RESERVATION

 RESERVATION_ITEM

Parameter Type Typing Method Associated Type

FLT_VAL Importing Type CMX_XS_W_SYMBOL_FILTER

QUERY Importing Type Ref To IF_CMX_XS_QUERY_SYMBOL

Code

method IF_CMX_XS_SERVICE_SYMBOL~GET_DATA.

*==
* This is a very basic method for valuation of XStep symbols:
* - It contains a lot of hard coded elements!
* - There is no exception handling!
*
*==

*=== Data declaration ===
 DATA: ls_tempsym TYPE cmx_xs_w_symbol_name,
 ls_symbol TYPE cmx_xs_w_symbol_name,
 l_ehs_symbol TYPE AUSP-ATWRT,
 l_rsnum TYPE resb-rsnum,
 l_rspos TYPE resb-rspos,
 l_rsart TYPE resb-rsart,
 l_sortf TYPE resb-sortf,
 l_matnr TYPE resb-matnr,
 l_qty TYPE resb-bdmng,
 ls_resbd TYPE resbd.

*=== Preparation ==

*--- Set namespace of the valuated symbols --------------------------
ls_tempsym-namespace = 'SAP'.

IF flt_val-application = 'MOR'.

* get reservation number from generated step
 ls_tempsym-symbol = 'RESERVATION'.
 query->get_value_into_numc(
 EXPORTING
 symbol = ls_tempsym
 IMPORTING
 data = l_rsnum).
* get reservation item from generated step
 ls_tempsym-symbol = 'RESERVATION_ITEM'.
 query->get_value_into_numc(
 EXPORTING

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 14

 How to Implement Custom BAdIs for XStep Valuation and Generation

 symbol = ls_tempsym
 IMPORTING
 data = l_rspos).
* get reservation item type from generated step
 ls_tempsym-symbol = 'RESERVATION_ITEM_TYPE'.
 query->get_value_into_string(
 EXPORTING
 symbol = ls_tempsym
 IMPORTING
 data = l_rsart).
* Read corresponding reservation data
 CALL FUNCTION 'CO_BT_RESB_READ_WITH_KEY'
 EXPORTING
 flg_resbd = space
 no_read_from_db = 'X'
 rsart_imp = l_rsart
 rsnum_imp = l_rsnum
 rspos_imp = l_rspos
 IMPORTING
 resbd_exp = ls_resbd
 EXCEPTIONS
 not_found = 1
 OTHERS = 2.

 l_sortf = ls_resbd-sortf.
 l_matnr = ls_resbd-matnr.

 IF ls_resbd-nomng IS initial.
 l_qty = ls_resbd-bdmng.
 ELSE.
 l_qty = ls_resbd-nomng.
 ENDIF.

ELSE.

* Put some dummy evaluation when the calling application is
* not the process order
 l_sortf = '<no value>'.

ENDIF.

*=== Valuation depending on the filter symbol =======================
 ls_symbol-namespace = flt_val-namespace.
 ls_symbol-symbol = flt_val-symbol.

 CASE flt_val-symbol.

*___ Sortstring of the Reservation Item _____________________________
 WHEN 'SORTSTRING'.
 query->set_value_from_string(symbol = ls_symbol
 data = l_sortf
 domain = 'DDIC/SORTP').

 ENDCASE.
*==
*Different Valuation Methods:
*SET_VALUE_FROM_FLOAT
*SET_VALUE_FROM_INTEGER
*SET_VALUE_FROM_NUMC
*SET_VALUE_FROM_PACKED
*SET_VALUE_FROM_STRING
*SET_VALUE_FROM_STRUCTURE
*SET_VALUE_FROM_TABLE
*SET_VALUE_FROM_TIME

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 15

 How to Implement Custom BAdIs for XStep Valuation and Generation

*SET_VALUE_FROM_XSTRING
*SET_VALUE_FROM_TEXT

ENDMETHOD.

Notes on the valuation method (query->set_value_from…):

The method depends on the type of the data field you want to update. The following methods are available:
 SET_VALUE_FROM_FLOAT
 SET_VALUE_FROM_INTEGER
 SET_VALUE_FROM_NUMC
 SET_VALUE_FROM_PACKED
 SET_VALUE_FROM_STRING
 SET_VALUE_FROM_STRUCTURE
 SET_VALUE_FROM_TABLE
 SET_VALUE_FROM_TIME
 SET_VALUE_FROM_XSTRING
 SET_VALUE_FROM_TEXT

To determine which domain string you have to use, you have to go to the field in DDIC that you used to
define the variable and take the name of the data element.

Example:

In the coding above the variable l_sortf was defined as follows:

 l_sortf TYPE resb-sortf

Call table RESB in SE11 and look for field SORTF. There the data element SORTP is used to define the
field. Therefore the domain you have to use is ‘DDIC/SORTP’.

Don’t use the domain that you find in the data element in DDIC! (In this example ‘CHAR10’)

Generation scope

Simple generation with filter

The basis of this generation scope is the SAP standard scope of generation ‘MATERIAL_RESV’ (‘For All
Reservation Items’). Additionally a user-definable filter option is provided: If there is a parameter in the XStep
that is called ‘F_SORT’ the value of that parameter is used to filter the resulting list.

Example: If F_SORT=’A*’ the generation scope returns all material reservations where the sort string begins
with an ‘A’.

Parameter Type Typing Method Associated Type

FLT_VAL Importing Type CMX_XS_W_GENERATION_FILTER

QUERY Importing Type Ref To IF_CMX_XS_QUERY_GENERATION

Code

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 16

 How to Implement Custom BAdIs for XStep Valuation and Generation

METHOD IF_CMX_XS_SERVICE_GENERATION~GET_DATA.

 DATA: l_count TYPE i,
 l_index TYPE i,
 l_para_name TYPE cmx_xs_param_name,
 l_para_value TYPE cmx_types_w_value,
 l_sort TYPE usrchar20,
 l_rsnum TYPE resb-rsnum,
 l_rspos TYPE resb-rspos,
 l_rsart TYPE resb-rsart,
 ls_resbd TYPE resbd,
 ls_symbol TYPE cmx_xs_w_symbol_name,
 ls_generation TYPE cmx_xs_w_generation_name,
 lt_parameter TYPE cmx_xs_t_parameter,
 lo_parameter TYPE REF TO if_cmx_xs_parameter,
 lo_step TYPE REF TO if_cmx_xs_step,
 lo_query_gen TYPE REF TO if_cmx_xs_query_symbol.

* Execute the standard generation for all operations
 ls_generation-namespace = 'SAP'.
 ls_generation-generation = 'MATERIAL_RESV'.
 l_count = query->add_query(ls_generation).

* Get the parameter SORT from the step
* If it is not given, treat it as space
 lo_step = query->get_step().
 lt_parameter = lo_step->get_parameters().
 LOOP AT lt_parameter INTO lo_parameter.
 l_para_name = lo_parameter->get_name().
 IF l_para_name = 'F_SORT'.
 l_para_value = lo_parameter->get_value().
 CALL METHOD l_para_value-domobj->conv_into_string
 EXPORTING
 intval = l_para_value-intval
 IMPORTING
 data = l_sort.
 EXIT.
 ENDIF.
 ENDLOOP.

* Check the sortstring of every generated reservation item
 l_index = 1.
 WHILE l_index <= l_count.
* Determine generated step # l_index
 lo_query_gen = query->get_symbols(l_index).
 ls_symbol-namespace = 'SAP'.
* get reservation number from generated step
 ls_symbol-symbol = 'RESERVATION'.
 lo_query_gen->get_value_into_numc(
 EXPORTING
 symbol = ls_symbol
 IMPORTING
 data = l_rsnum).
* get reservation item from generated step
 ls_symbol-symbol = 'RESERVATION_ITEM'.
 lo_query_gen->get_value_into_numc(
 EXPORTING
 symbol = ls_symbol
 IMPORTING
 data = l_rspos).
* get reservation item type from generated step
 ls_symbol-symbol = 'RESERVATION_ITEM_TYPE'.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 17

 How to Implement Custom BAdIs for XStep Valuation and Generation

 lo_query_gen->get_value_into_string(
 EXPORTING
 symbol = ls_symbol
 IMPORTING
 data = l_rsart).
* Read corresponding reservation data
 CALL FUNCTION 'CO_BT_RESB_READ_WITH_KEY'
 EXPORTING
 flg_resbd = space
 no_read_from_db = 'X'
 rsart_imp = l_rsart
 rsnum_imp = l_rsnum
 rspos_imp = l_rspos
 IMPORTING
 resbd_exp = ls_resbd
 EXCEPTIONS
 not_found = 1
 OTHERS = 2.
* If the value of the parameter does not match,
* delete the generated step
 IF ls_resbd-sortf NP l_sort.
 query->delete(l_index).
 l_count = l_count - 1.
 ELSE.
 l_index = l_index + 1.
 ENDIF.
 ENDWHILE.

ENDMETHOD.

Material components w/o context restriction

When you use the standard generation scope for material components in an XStep environment where a
phase context is set the result will always be restricted to the components that are assigned to that phase.
Sometimes it can be useful to have the complete list of components despite of that context.

This method builds a completely new generation (in contrast to the last example where a standard
generation scope was re-used). The filtering via sort string is also used as explained before.

Parameter Type Typing Method Associated Type

FLT_VAL Importing Type CMX_XS_W_GENERATION_FILTER

QUERY Importing Type Ref To IF_CMX_XS_QUERY_GENERATION

Code
method IF_CMX_XS_SERVICE_GENERATION~GET_DATA.

*==
* Method for generation of material components independent of the
* used context
*
* Derived from the standard class CL_IM_COCR_CMX_BI_GEN_MAT and
* method ORDER_MAT_GENERATE
*
*==

*=== Data declaration ===
 DATA: l_count TYPE i,
 l_index TYPE i,
 l_para_name TYPE cmx_xs_param_name,
 l_para_value TYPE cmx_types_w_value,
 l_sort TYPE usrchar20,

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 18

 How to Implement Custom BAdIs for XStep Valuation and Generation

 l_rsnum TYPE resb-rsnum,
 l_rspos TYPE resb-rspos,
 l_rsart TYPE resb-rsart,
 l_lines_comp TYPE sy-tabix,
 ls_resbd TYPE resbd,
 ls_symbol TYPE cmx_xs_w_symbol_name,
 ls_generation TYPE cmx_xs_w_generation_name,
 ls_context TYPE cocr_cmx_s_con_data,
 lt_resbd TYPE TABLE OF resbd,
 lt_parameter TYPE cmx_xs_t_parameter,
 lo_parameter TYPE REF TO if_cmx_xs_parameter,
 lo_step TYPE REF TO if_cmx_xs_step,
 lo_query_gen TYPE REF TO if_cmx_xs_query_symbol,
 lo_context TYPE REF TO if_cmx_xs_context,
 lo_symbol TYPE REF TO if_cmx_xs_query_symbol.

*=== Preparation ==

*___ Get some parameters from the step ______________________________
* If it is not given, treat it as space
 lo_step = query->get_step().
 lt_parameter = lo_step->get_parameters().
 LOOP AT lt_parameter INTO lo_parameter.
 l_para_name = lo_parameter->get_name().
* ___ Sortstring __
 IF l_para_name = 'F_SORT'.
 l_para_value = lo_parameter->get_value().
 CALL METHOD l_para_value-domobj->conv_into_string
 EXPORTING
 intval = l_para_value-intval
 IMPORTING
 data = l_sort.
 EXIT.
 ENDIF.
 ENDLOOP.
 IF l_sort IS INITIAL.
 l_sort = '*'.
 ENDIF.

* Get context
 lo_context = query->get_context().
 CHECK NOT lo_context IS INITIAL.

*--- Copied and adapted from standard method xs_get_context
* (class CL_COCR_CMX_TOP) ---
* ls_context = me->xs_get_context(lo_context).
 DATA: ls_context_root TYPE cocr_cmx_s_cr_data,
 ls_context_step TYPE cocr_cmx_s_cs_data.
 CLEAR ls_context.
 IF lo_context->get_category() = if_cmx_xs_context=>co_category_root.
 CALL METHOD lo_context->get_data
 IMPORTING
 data = ls_context_root.
 ls_context-aufnr = ls_context_root-aufnr.
 ls_context-aufpl = ls_context_root-aufpl.
 ls_context-objtyp = 'H'.
 ELSE.
 CALL METHOD lo_context->get_data
 IMPORTING
 data = ls_context_step.
 ls_context-aufnr = ls_context_step-aufnr.
 ls_context-aufpl = ls_context_step-aufpl.
 ls_context-aplzl = ls_context_step-aplzl.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 19

 How to Implement Custom BAdIs for XStep Valuation and Generation

 ls_context-objtyp = ls_context_step-objtyp.
 ENDIF.

 CHECK NOT ls_context-aufnr IS INITIAL.

* Read RSNUM for order and check if reservation buffer
* table is filled
 CALL FUNCTION 'CO_BT_CAUFV_READ_WITH_KEY'
 EXPORTING
 aufnr_act = ls_context-aufnr
 no_dialog_info = 'X'
 IMPORTING
 rsnum_exp = l_rsnum
 EXCEPTIONS
 not_found = 1
 OTHERS = 2.

 IF sy-subrc <> 0.
 RAISE EXCEPTION TYPE cx_cmx_xs_exception
 EXPORTING
 textid = cx_cmx_xs_exception=>cx_cmx_xs_exception.
 ENDIF.

 PERFORM check_read_db IN PROGRAM saplcobc USING l_rsnum.

* Generation for order components/materials
 CALL FUNCTION 'CO_BC_RESBD_TAB_TO_ORDER_GET'
 EXPORTING
 aufnr_imp = ls_context-aufnr
 flg_check_log_loe = 'X'
 flg_check_vbkz_del = 'X'
 TABLES
 resbd_tab = lt_resbd.

* Delete components without proper sort string
 DELETE lt_resbd WHERE sortf NP l_sort.

* Here come further restrictions (other generation scopes)
 CASE flt_val-generation.

 WHEN 'ZPP_RES_NOCONTEXT'.
 " Do nothing else

 when 'ZPP_BULKCHARGEN'.
 DELETE lt_resbd WHERE postp NE 'Z'.
 DELETE lt_resbd WHERE SPLKZ NE '2'.

 ENDCASE.

* Create query objects for products (this is where the generation
* of lines happens)
 DESCRIBE TABLE lt_resbd LINES l_lines_comp.
 CHECK l_lines_comp > 0.
 query->set_count(l_lines_comp).

* Set namespace of symbols
 ls_symbol-namespace = 'SAP'.

* Here the symbols for some key fields (e.g. reservation number)
* will be valuated to enable
* the valuation of other derived symbols (e.g. material quantity)
 LOOP AT lt_resbd INTO ls_resbd.
 l_lines_comp = sy-tabix.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 20

 How to Implement Custom BAdIs for XStep Valuation and Generation

* Get query symbols
 lo_symbol = query->get_symbols(l_lines_comp).

* Evaluate reservation keys
 ls_symbol-symbol = 'RESERVATION'.
 lo_symbol->set_value_from_numc(symbol = ls_symbol
 data = ls_resbd-rsnum
 domain = '/DDIC/RSNUM').
 ls_symbol-symbol = 'RESERVATION_ITEM'.
 lo_symbol->set_value_from_numc(symbol = ls_symbol
 data = ls_resbd-rspos
 domain = '/DDIC/RSPOS').
 ls_symbol-symbol = 'RESERVATION_ITEM_TYPE'.
 lo_symbol->set_value_from_string(symbol = ls_symbol
 data = ls_resbd-rsart
 domain = '/DDIC/RSART').

* From here on you can pre-valuate often-used symbols for
* performance improvement
* Domain names can be looked up in the attributes of
* top class CL_COCR_CMX_TOP
* Example: Material number
* ls_symbol-symbol = 'MATERIAL'.
* lo_symbol->set_value_from_string(symbol = ls_symbol
* data = ls_resbd-matnr
* domain = '/DDIC/MATNR').

 ENDLOOP.

endmethod.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 21

 How to Implement Custom BAdIs for XStep Valuation and Generation

Related Content
For more information, visit the Manufacturing homepage.

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 22

https://www.sdn.sap.com/irj/sdn/bpx-manufacturing

 How to Implement Custom BAdIs for XStep Valuation and Generation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com
© 2008 SAP AG 23

Copyright
© Copyright 2008 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries, pSeries, xSeries,
zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity, Tivoli, Informix, i5/OS, POWER, POWER5, OpenPower and PowerPC are
trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by
Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the world. All
other product and service names mentioned are the trademarks of their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies ("SAP
Group") for informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and services are those that are set forth in the
express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

These materials are provided “as is” without a warranty of any kind, either express or implied, including but not limited to, the implied
warranties of merchantability, fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials.

SAP does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these
materials. SAP has no control over the information that you may access through the use of hot links contained in these materials and
does not endorse your use of third party web pages nor provide any warranty whatsoever relating to third party web pages.

Any software coding and/or code lines/strings (“Code”) included in this documentation are only examples and are not intended to be
used in a productive system environment. The Code is only intended better explain and visualize the syntax and phrasing rules of
certain coding. SAP does not warrant the correctness and completeness of the Code given herein, and SAP shall not be liable for errors
or damages caused by the usage of the Code, except if such damages were caused by SAP intentionally or grossly negligent.

	Applies to:
	Summary
	Authors Bio
	Table of Contents
	Introduction
	XStep Background
	BAdIs for XSteps

	Customizing
	Release Namespaces [CMX04]
	Applications & Variants [CMX01] - Optional
	Scopes of Generation and Valuation Symbols [CMX02]
	Data Categories
	Valuation Symbols
	Scopes of Generation

	Check Implementation Status [CMX05]

	BAdI Implementation [SE18]
	Create implementation
	Maintain Filter for the implementation
	Maintain coding (interface)

	Sample coding
	Symbol valuation
	Sort string

	Generation scope
	Simple generation with filter
	Material components w/o context restriction

	Related Content
	Copyright

